Improving dairy farm NUE using advanced technologies
More Profit from Nitrogen: Improving dairy farm nitrogen efficiency using advanced technologies

Helen Suter, Oxana Belyaeva, Graeme Ward, Yong Li, Manish Patel, Dongryeol Ryu, Dona Thushari Wijesinghe, Arjun Pandey, Deli Chen

is supported by funding from the Australian Government Department of Agriculture, Water and the Environment as part of its Rural R&D for Profit Program, Dairy Australia and The University of Melbourne.
Research questions / objectives

• How can fertiliser N use efficiency be improved in high rainfall zone dairy systems of SE Australia?

• Investigate approaches to improve NUE;
 • Determine seasonal N fertiliser responses
 • Consider N supply from mineralisation in budget
 • Understand the fate of applied N
 • Understand the source of N for pasture nutrition
 • Assess the role of enhanced efficiency fertilisers
 • Use new technologies to determine N requirements
Major Research activities / methodologies

- >2.5 years of field trial in SW Victoria (Allansford)
- N response (0-80 kg N/ha), enhanced efficiency fertiliser
- Dryland and irrigated sites, plus additional short-term site
- Pasture biomass, N uptake, Agronomic NUE, Fate of applied N (15N)
- Multispectral imagery of pasture
Major Research activities / methodologies

- Prediction of mineralised N supply (models)
- $\text{N}_2\text{O}:\text{N}_2$ laboratory experiments
Findings: Seasonality of N response and NUE

\[\text{NU}_{\text{AE}} = \frac{(\text{kg DM in fert trt} - \text{kg DM in control})}{\text{kg N applied}} \]

Regional practice

Graphs showing the relationship between N application and DM production, as well as N use efficiency across different seasons.
Findings: Variability of seasonal N response at autumn break
Management of water leading into autumn appears key for N response
➢ Mineralisation, N utilisation, Pasture growth potential
Over summer under dryland systems some moisture is required for mineralisation but high water input leads to lower mineral N at the break because of pasture growth.

Findings: Mineralisation

- 180-200 kg N ha\(^{-1}\) yr\(^{-1}\)
- \(~1\%\) of organic N pool
- Eg. 20 kg N ha\(^{-1}\) available at autumn break

Drivers of soil N for Autumn growth

- N rate
- Future temperature
- Soil OC

Autumn mineralisation

- Past temperature
- Past rainfall
Findings: Source of N for plants

<table>
<thead>
<tr>
<th>N rate kg ha⁻¹</th>
<th>N derived from fertiliser (%)</th>
<th>N derived from soil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Autumn</td>
<td>Spring</td>
</tr>
<tr>
<td>20</td>
<td>18±2.5</td>
<td>21±2.1</td>
</tr>
<tr>
<td>40</td>
<td>35±1.1</td>
<td>36±6.0</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>Spring</td>
</tr>
<tr>
<td></td>
<td>82±2.4</td>
<td>79±2.3</td>
</tr>
<tr>
<td></td>
<td>65±1.3</td>
<td>64±1.5</td>
</tr>
</tbody>
</table>

After 12 months (Autumn) and 8 months (Spring)

Majority of N comes from the soil
Findings: Fate of applied N

Percentage recovery of fertiliser N in pasture from a single fertiliser event

<table>
<thead>
<tr>
<th>N rate (kg N ha(^{-1}))</th>
<th>Growth cycle</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUTUMN</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>24.3</td>
<td>5.4</td>
</tr>
<tr>
<td>40</td>
<td>26.2</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>SPRING</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>22.5</td>
<td>16.1</td>
</tr>
<tr>
<td>40</td>
<td>22.2</td>
<td>13.0</td>
</tr>
</tbody>
</table>

Highest N recovery occurs in 1\(^{st}\) growth cycle, N continues to be taken up
Findings: Fate of fertiliser N

AUTUMN (12 months)

SPRING (8 months)

15N recovery (%)

Unaccounted
Total
Soil
Shoots
Roots

Applied N continues to cycle through soil-plant system – consider loss risk at application time
Findings: Recovery of N in soils from SW Vic region

Recovery (%) of N applied to soils of different properties, applying 40 kg N ha\(^{-1}\)

<table>
<thead>
<tr>
<th>Site</th>
<th>Texture</th>
<th>OC (%)*</th>
<th>Plant</th>
<th>Soil+roots</th>
<th>Total</th>
<th>Plant</th>
<th>Soil+roots</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coorimungle</td>
<td>Medium clay</td>
<td>5.5</td>
<td>36</td>
<td>36</td>
<td>72</td>
<td>26</td>
<td>36</td>
<td>62</td>
</tr>
<tr>
<td>Coorimungle</td>
<td>Sandy clay loam</td>
<td>7.4</td>
<td>32</td>
<td>30</td>
<td>62</td>
<td>49</td>
<td>27</td>
<td>76</td>
</tr>
<tr>
<td>Naringal</td>
<td>Sandy clay</td>
<td>11</td>
<td>30</td>
<td>30</td>
<td>60</td>
<td>33</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>Naringal</td>
<td>Sand</td>
<td>3.5</td>
<td>29</td>
<td>36</td>
<td>65</td>
<td>46</td>
<td>35</td>
<td>81</td>
</tr>
<tr>
<td>Panmure</td>
<td>Clay loam</td>
<td>4.0</td>
<td>31</td>
<td>36</td>
<td>67</td>
<td>39</td>
<td>29</td>
<td>68</td>
</tr>
<tr>
<td>Allansford</td>
<td>Loam</td>
<td>3.2</td>
<td>29</td>
<td>42</td>
<td>71</td>
<td>36</td>
<td>28</td>
<td>64</td>
</tr>
</tbody>
</table>

* 0-10 cm

55-81% recovery of N in the soil-plant system
Findings: N\textsubscript{2} loss and N\textsubscript{2}O:N\textsubscript{2} ratio

High losses of N\textsubscript{2} under wet conditions
Findings: Usefulness of new technologies

Normalised Difference Red Edge

Photochemical reflectance index

Intermediate growth stage gives best results
Key messages

• Pasture N largely from soil
• Applied fertiliser N cycles through plant-soil system over long-term
• Build soil N stocks through regular fertilisation
• Mineralisation supply is seasonal and can be predicted for budget
• Avoid high N use during times of low use / high loss risk
• Consider water management to maximise productivity – particularly at growing season margins
• Use of remote sensing technology shows promise for predicting N needs
Outputs for industry

• Update of BMPs
 o Autumn break N
 o Use of enhanced efficiency fertilisers
 o Seasonal mineralisation

• Mineralisation tool

• Remote sensing tools (proof of concept)

• Contact: helencs@unimelb.edu.au
The More Profit from Nitrogen Program:
enhancing the nutrient use efficiency of intensive cropping and pasture systems

is a collaborative project of the cotton, dairy, sugar & horticulture industries of Australia.